
AFRL-IF-RS-TR-2000-24
Final Technical Report
March 2000

VIRTUAL DISTRIBUTED COMPUTING
ENVIRONMENT

Syracuse University

Salim Hariri, Dongmin Kim, Yoonhee Kim, and Ilkyeun Ra

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000420 145
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,

including foreign nations.

AFRL-IF-RS-TR-2000-24 has been reviewed and is approved for publication.

APPROVED:

JONB.VALENTE
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no km^emgoyed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific

document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 07040188

Pubic reD.rtra burden lor this collection ol information is estimated to average I hour per response, including the time lor reviewing instructions, searching enisling data sources, gathering and maintaining*, data needed, and completing and reviewing
hTooZZZ ^Tiy^lTwin, this burden estimate er an» other aspeO ol this c.fcc.ion ol information, including suggestions: for raducingths burden to Washington Headers Servos. LW.,e for Infonnahor,

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, V« 22202-4302, and to the Office of Management and Budget, Paperwork «educhon Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE

MARCH 2000

3. REPORT TYPE AND DATES COVERED

Final M95-Sep98
4. TITLE AND SUBTITLE

VIRTUAL DISTRIBUTED COMPUTING ENVIRONMENT

6. AUTHORIS)

Salim Hariri, Dongmin Kim, Yoonhee Kim, and Ilkyeun Ra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Syracuse University
Office of Sponsored Programs
113 BowneHall
Syracuse NY 13244-1200

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGA
525 Brooks Road
Rome NY 13441-1200

5. FUNDING NUMBERS

C - F30602-95-C-0104
PE- 62702F
PR- 5581
TA- 21
WU-AK

8. PERFORMING ORGANIZATION

REPORT NUMBER

N/A

10. SPONSORINGjMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-24

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Jon B. Valente/IFGA/(315) 330-3241

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The next generation of network-centric applications will utilize a large number of computing and storage systems that are
connected by global high speed networks. We refer to the environment that provides transparent computing and
communication services for large scale parallel and distributed applications as Metacomputing environment. In this report,
we present the design and the experimental results with the Virtual Distribute Computing Environment (VDCE) and the
Adaptive Distributed Virtual Computing Environment (ADViCE) being developed at the University of Arizona and Syracuse

University

14. SUBJECT TERMS

Virtual Environments, Application Environments, Virtual Machine, High-Performance
Computing

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

56

16. PRICE CODE

20. LIMITATION OF

ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro. WHS/QI0S. Ott 94

Contents

1 Introduction 1

2 Related Work 3

3 Overview of VDCE Software Architecture 5
3.1 Application Editor 6
3.2 Application Scheduler 8
3.3 VDCE Runtime System 12

4 VDCE Testbed: Experimental Results and Discussion 15
4.1 Experiment 1: Using VDCE as a Parallel Evaluation Tool 16
4.2 Experiment 2: Using VDCE as a Problem Solving Environment 19

5 ADAPTIVE DISTRIBUTED VIRTUAL COMPUTING ENVIRONEMNT
(ADViCE) 20
5.1 Introduction 20
5.2 Related Work 21
5.3 Parallel and Distributed Software Development Issues 21
5.4 Mobile Computing Issues 22
5.5 Overview of ADViCE Architecture 23

5.5.1 Visualization and Editing Server (VES) 25
5.5.2 Control and Management Server (CMS) 27

5.6 ADViCE Adaptation Approach 28

6 ADViCE Testbed: Experimental Results and Discussion 34
6.1 Experiment 1: Using ADViCE as a Parallel Evaluation Tool 34
6.2 Experiment 2: Using ADViCE as a Problem Solving Environment 37
6.3 Experiment 3: Evaluation of the ADViCE Adaptation Approach 38

7 Conclusion 40

References **■

List of Figures

1 Virtual Distributed Computing Environment (VDCE) 5
2 Interactions Among the VDCE Modules 6
3 VDCE Authentication Window 7

4 Building the Linear Equation Solver Application with the Application Editor 8
5 Interactions Among the Control Virtual Machine Components 14
6 Setting Up the Application Execution Environment 14
7 The configuration of the VDCE Testbed 16
8 Execution Time of Matrix Multiplication Task Using VDCE 17
9 Execution Time of Matrix Multiplication Task Using p4 18
10 Adaptive Changes in the ADViCE environment 24
11 The Main Components of the ADViCE Architecture 25
12 An Application Flow Graph Example 26
13 The Performance of each Application Task 27
14 ADViCE Adaptation Algorithm 30

15 ADViCE Change Detection Procedures 31
16 Verification and Analysis Procedures 32

17 Adaptation Plan Procedures 23
18 The configuration of the current ADViCE Testbed 34
19 The Performance of the ADViCE Implementation of the Matrix-Vector

Multiplication
20 The Performance of the P4 Implementation of the Matrix-Vector Multipli-

cation 36

21 An Example of Fault Tolerant Distributed Application 39
22 An Example of the ADViCE Adaptation Algorithm 40

List of Tables

Table 1 Symbols and their meaning 9

Table 2 The performance comparison of matrix multiplication task for each software phase... 18
Table 3 Performance comparison of linear equation solver application for each software

phase 20

Table 4 The performance comparison of the matrix-vector multiplication task for each software
Development phase ■*'

Table 5 Performance comparison of the linear equation solver application for each software
Development phase 3S

in

Abstract

The next generation of network-centric applications will utilize a large number of comput-
ing and storage systems that are connected by global high speed networks. We refer to the
environment that provides transparent computing and communication services for large
scale parallel and distributed applications as Metacomputing environment. In this project,
we present the design and the experimental results with the Virtual Distributed Comput-
ing Environment (VDCE) and the Adaptive Distributed Virtual Computing Environment
(ADViCE) being developed at The University of Arizona and Syracuse University.

The VDCE provides an efficient web-based approach for developing, running, evaluat-
ing and visualizing large-scale parallel and distributed applications that utilize computing
resources connected by local and/or wide area networks. The VDCE task libraries re-
lieve end-users of tedious task implementations and also support reusability. The VDCE
software architecture is described in terms of three modules: a) the Application Editor, a
user-friendly application development environment that generates the Application Flow
Graph (AFG) of an application; b) the Application Scheduler, which provides an efficient
task-to-resource mapping of AFG; and c) the VDCE Runtime System, which is responsible
for running and managing application execution and for monitoring the VDCE resources.
We present experimental results of an application execution on the VDCE prototype for
evaluating the performance of different machine and network configurations. We also
show how VDCE can be used as a problem-solving environment on which large-scale,
network-centric applications can be developed by a novice programmer rather than by an
expert in low-level details of parallel programming languages.

The ADViCE which is an extension of the VDCE aims at supporting mobile com-
puting and communication resources. ADViCE supports a transparent access to the
development, computing and communication services that are offered regardless whether
the users are connected through fixed or mobile networks. In addition, the ADViCE
resources can also be connected through mobile as well as fixed networks. The AD-
ViCE architecture consists of two independent servers: Visualization and Editing Server
(VES) and Control and Management Server (CMS). These two servers provide all the
services required in an efficient parallel and distributed programming environment. The
ADViCE services include Application Editing Service, Application Visualization Service,
Application Resource Service, Application Management Service, Application Control Ser-
vice and Application Data Service. We also present the experimental results to evaluate
the performance and effectiveness of the ADViCE prototype to provide three important
functions: 1) Evaluation Tool: to analyze the the performance of parallel applications
with different machine and network configurations; 2) Problem-Solving Environment:
to assist in the development of large scale parallel and distributed applications, and 3)
Application-Transparent Adaptivity: to allow parallel and distributed applications to run
in a transparent manner when their clients and resources are fixed or mobile.

1 Introduction

Grand challenge problems have computational and storage resource requirements that
are beyond the capacities of a single computing environment. Additionally, emerging net-

work technologies such as fiber-optic transmission facilities and the Asynchronous Transfer
Mode (ATM) enable data to be transferred at the rate of a gigabit per second (Gbps).
Since high-speed networks have become more common and provide low latency commu-
nication services that are close to those offered by massively parallel processors (MPPs),
there is a growing interest in combining the computational and storage resources that
are available over the wide area networks to build a new execution environment called
metacomputing [21]. New software tools and techniques are required to utilize the meta-
computing resources, which are not fully supported by existing parallel or distributed
software. The heterogeneous and dynamic nature of a metacomputing environment lim-
its the use of existing parallel computing tools; similarly, the existing distributed systems
may not provide the high performance that is a key target in a metacomputing environ-

ment.

In this report we present the design of the Virtual Distributed Computing Environ-
ment (VDCE) currently that has been developed at Syracuse University. In addition,
we also present the design and the experimental results of the Adaptive Distributed Vir-
tual Computing Environment (ADViCE) which is an extension of the VDCE to support
mobile computing and communication resources.

VDCE [8, 9] provides an efficient mechanism to execute large-scale applications on
distributed and diverse platforms. The main goal of the VDCE project is to develop an
easy-to-use, integrated software development environment that provides software tools
and middleware software to handle all the issues related to developing parallel and dis-
tributed applications, scheduling tasks onto the best available resources, and managing
the Quality of Service (QoS) requirements.

VDCE is a three-tiered software architecture that consists of an Application Edi-
tor to assist in application development and specification, an Application Scheduler to
perform transparent application scheduling and resource configuration, and a VDCE Run-
time System to run and manage the application execution. The Application Editor is a
web-based graphical user interface that helps users to develop parallel and distributed
applications. In VDCE the application development process is based on a dataflow pro-
gramming paradigm. The Application Editor generates its output in terms of an Applica-
tion Flow Graph (AFG) in which the nodes represent task computations and links denote
communication and/or synchronization among the nodes (tasks). The Application Editor
provides menu-driven, functional building blocks of task libraries. A node of an AFG is
a well-defined function or task selected from a given task library. VDCE provides a large
set of task libraries grouped in terms of their functionality, such as matrix operations,
Fourier analysis, C3I (command, control, communication, and information) applications,

etc.

VDCE provides a distributed runtime scheduler, the Application Scheduler, which
provides efficient task-to-resource mapping of application flow graphs. The Application
Scheduler uses performance prediction of individual tasks to achieve efficient resource allo-
cations. The schedule decision is based on the task specifications (i.e., hardware/software
requirements) in the application flow graph, locations and configurations of resources, and
up-to-date resource loads. The VDCE Runtime System consists of two parts: the Control
Virtual Machine (CVM), and the Data Virtual Machine (DVM). The CVM is responsible

for monitoring the VDCE resources, setting up the execution environment for a given
application, monitoring the execution of the application tasks on the assigned computers,
and maintaining the performance, fault tolerance, and quality of service (QoS) require-
ments. The DVM is responsible for providing low latency and high-speed communication
and synchronization services for inter-task communications.

The main goal of the ADViCE project is to extend the current VDCE to support
mobile users and resources. ADViCE provides a parallel and distributed programming
environment; it provides an efficient web-based user interface that allows users to develop,
run and visualize parallel/distributed applications running on heterogeneous computing
resources connected by wired and wireless networks. Consequently, the fact that some of
the resources are mobile such as users, computers, storage devices and networks become
transparent to the users and the application developers.

The rest of the report is organized as follows. Section 2 is a summary of the related
work. In Section 3 we present the design and implementation issues of the VDCE software
architecture. Section 4 presents experimental results and evaluation of the current VDCE
prototype. Section 5 presents the architecture and experimental results with ADViCE.
Section 6 presents Concluding remarks and future work.

2 Related Work

In this section we provide a review of related work on the software development process,
followed by related work on metacomputing. The software development process of par-
allel and distributed applications can broadly be described in terms of three phases: a)
application design and specification, b) application scheduling and resource configuration,
and c) application execution and runtime.

In a well-integrated execution environment it is important to provide: a) an easy-to-
use interactive user-interface to design and specify parallel distributed applications and,
b) well-developed graphical utilities for visualization of results and program behavior.
Generally, writing parallel/distributed programs overwhelms users due to the difficulty
of explicitly expressing communication and synchronization among the computations [7].
A graph-based programming environment, in which a program is defined as a directed
graph where nodes denote computations and links denote communication and synchro-
nization between nodes, may be used to decrease the work of programmers. Currently,
there are a few visual parallel programming languages and environments, such as Compu-
tationally Oriented Display Environment (Code) [11], Heterogeneous Network Computing
Environment (HeNCE) [12], and Zoom [13]. To develop a Code or HeNCE application, a
programmer first expresses the sequential computations in a standard language and then
specifies how they are to be composed into a parallel program. Zoom is a hierarchical
representation abstraction for describing heterogeneous applications. Zoom representa-
tion of an application can be translated into a HeNCE program for execution [12]. On
the other hand, application development tools and environments are being modified to
support web-based user interfaces, since the World Wide Web is becoming a low-cost,
standard interface mechanism with which to access the computational resources that are

distributed all over the world [29].

After a parallel/distributed application is developed, the tasks of the application are
assigned to the available resources. In the literature, although the task scheduling (or
resource allocation) problem has been investigated extensively, most of the algorithms
and systems are valid only for specific architectures and/or applications. One of the few
research groups targeted on a general scheduling framework is the APPLeS [14] group.
APPLeS proposes application-level scheduling in which everything about the system is
evaluated in terms of its impact on the application. APPLeS develops a customized sched-
ule for each application by including user-specific, application-specific, system-specific,
and dynamic information in its scheduling decision. The Network Weather Service com-
ponent provides dynamic information. The Heterogeneous Application Template provides
specific information about the structure of the application. User-supplied information is
entered into the system with a user-specification file. There are resource management
systems to provide load sharing and resource allocation, one of which, developed at the
University of Wisconsin, is the Condor [31] project, a distributed batch system for sharing
the workload of compute-intensive jobs in a pool of UNIX workstations connected by a
network.

The application execution and runtime phase executes the developed and configured
application and produces the required output. This stage integrates the assigned re-
sources that will be involved in execution and supports inter-module communications,
which are based on either a message-passing tool such as PVM [23], P4 [25], MPI [24],
and NCS [26] or on a distributed shared memory (DSM) model. During the execution of
the application this stage accepts data from different computing elements and combines
them for proper visualization. It intercepts the error messages generated and provides
proper interpretation. Some of these message-passing tools may be used in a metacom-
puting environment, although they were initially developed for parallel and distributed
applications. In the first I-WAY metacomputing testbed, Nexus and MPI communica-
tion libraries were used within the prototype implementations of Globus communications.

In addition, there are a few projects targeted toward providing a metacomputing envi-
ronment on diverse resources. The earliest metacomputer, the NCSA Metacomputer [27],
was an integration of several MPPs, mass storage units, visualization and I/O devices.
Globus [21] and Legion [28] are among the most recent projects targeted toward solv-
ing metacomputing problems. A low-level toolkit in the Globus environment provides
mechanisms such as communication, authentication, and network information. These
mechanisms can be used to construct higher-level metacomputing services such as paral-
lel programming tools, schedulers, etc. On the other hand, Legion is a distributed-object
metacomputing environment that is targeted to support a wide set of tools, languages,
and programming models. The major objectives of the Legion project are site autonomy,
an easy-to-use seamless computational environment, high performance via parallelism,
security for users and resource owners, management and exploitation of resource hetero-
geneity, multiple language support and interoperability and fault tolerance. Additionally,
there are several web-based metacomputing projects [29], that either use the JAVA pro-
gramming language as the main computation language or provide a coordination medium
based on WWW technologies or the JAVA language. There may be some drawbacks to

these methods. First, they may not support the programs written in other languages such
as C and Fortran. Second, they may support communication only between a server and
a client, which restricts the execution of the candidate applications.

3 Overview of VDCE Software Architecture

The main design philosophy of VDCE is to provide a general software development en-
vironment to build and execute large-scale applications on a network of heterogeneous
resources. VDCE is composed of geographically distributed computation sites (domains),
as shown in Figure 1, each of which has one or more VDCE Servers. The words "site"
and "domain" are used interchangeably in this paper. Each domain consists of several
clusters, each of which includes heterogeneous resources in terms of type, speed, or the
configuration. At each site the VDCE Server runs the server software, called site manager,
which handles inter-site communications and bridges VDCE modules to the web-based
site repository. The site manager is part of the Control Virtual Machine that was ex-
plained in Section 3.3.

SpedaiPurptxe
Architecture Storage SyÄem VDCE Siu

Figure 1: Virtual Distributed Computing Environment (VDCE)

The site repository consists of four different database tables. The user-accounts ta-
ble is used to handle user authentication. In the user-accounts table, each VDCE user
account is represented by a 5-tuple: user name, password, user ID, priority, and access
domain type. The resource-performance table provides the resource (machine and net-
work) performance attributes/parameters. These attributes are grouped into two parts:
a) static performance attributes stored in the database once during the initial configu-
ration of VDCE: host name, IP address, architecture type, operating system type, and
total memory size, the computing weight (which will be described later in the Application
Scheduler section) of each processor with respect to a base processor; and b) dynamic per-
formance attributes that are updated periodically: CPU load, network latency, network
bandwidth, and available memory size, number of processes, etc. The task-performance
table provides performance characteristics for each task in the system and is used to

predict the performance of the task on a given resource. Each task implementation is
specified by some parameters: computation size, communication size, and required mem-
ory size. For each task in VDCE, the task-performance table includes an entry for the
measured execution time of benchmarking the task per machine type as well as the CPU
loads when the measurements are taken. In order to find the location of a task's exe-
cutable, VDCE stores location information of each task (i.e., the absolute path of the
task executable) as well as other restrictions that might be related to the task execution
for each host in the task-constraints table. Due to specific library requirements or other
license restrictions, some task executables may reside only on a subset of the VDCE hosts.

User
Accounts

Resource
Performance

Task
Performance

Task
Constraints

&
c
2

s
5)

Application
Editor

Application
Scheduler

VDCE
Runtime System

Application Flow Graph (AFG)

Ressource Allocation Information

S'rte Repository

Figure 2: Interactions Among the VDCE Modules

The software development cycle for network applications can be viewed in terms of
three phases: application development and specification phase, application scheduling
and configuration phase, and execution and runtime phase. The functionality of these
three phases is handled by the Application Editor, Application Scheduler, and VDCE
Runtime System, respectively. Figure 2 shows the interaction of the VDCE modules
within a site. In the following subsections we describe in detail the design and prototype
implementation issues of the three main software modules.

3.1 Application Editor

The Application Editor is a web-based graphical user interface for developing parallel
and distributed applications. The end-user establishes a URL connection to the VDCE
Server software within the site (the Site Manager), which runs on a VDCE Server (see
Figure 3). The Site Manager implementation is based on JAVA Web server technology,
which uses servlets (i.e., server site JAVA applets) that relive the startup overheads and
run on any platform. After user authentication (as shown in Figure 3), the Application
Editor, which was implemented in JAVA, will be loaded into the user's local web browser
so that the user can develop his/her application.

The Application Editor provides menu-driven task libraries that are grouped in terms
of their functionality, such as the matrix algebra library, C3I (command and control appli-
cations) library, etc. A selected task is represented as a clickable and draggable graphical
icon in the active editor area. Each such icon includes the task name and a set of markers
for logical ports. Color coding used in this visual representation helps to distinguish input
ports from output ports. Operationally, the Application Editor can be in task mode, link

WELCOME TO SUVM

 User Authentication

ut,rNa*R|lIfölII§Il

PüssWora: lw^^' ^ ;

Uter Typft:

O Administrator ♦ ApplDevetoper O ModuDevetopar

IRom«Lsrj:|

[|Create| j|Ugln|j j|RBrr,ove|; [|EaTt|: |CLEAR|

Figure 3: VDCE Authentication Window

mode, or ran mode. In task mode, the user can select/add new tasks, and/or click/drag
icons to position them conveniently in the active editor area. In link mode, the user can
specify connections between tasks. In run mode, Editor submits the graph for execution
and visualizes the performance and runtime characteristics of an ongoing computation.

The process of building a VDCE application with the Application Editor can be di-
vided into two steps: building the application flow graph (AFG), and specifying the task
properties of the application. The application flow graph is a directed acyclic graph,
G = (T, L), where T is the set of tasks in the application and L is a set of directed
links among tasks. A directed link (i,j) between two tasks, Ti and Tj, of the application
indicates that Tj must complete its execution before Tj begins to run. Figure 4 shows
the application flow graph of a Linear Equation Solver (based on LU Decomposition)
developed using the Application Editor. In this application, the problem is to find the
solution vector a; in an equation Ax = b, where A is a known N x N matrix and 6 is a
known vector. With LU Decomposition, any matrix can be decomposed into the product
of a lower triangular matrix L and upper triangular matrix U. Once LU Decomposition
is solved, the solution vector, x, is derived with x = C-1(L_16). To construct the flow
graph of this application, the user creates nodes by selecting LU_Decomposition, Ma-
trixJnverse(2), and MatrbcMultiply(2) tasks from the Matrix-Operations menu.

After the application flow graph is generated, the next step in the application devel-
opment process is to specify the properties of each task. A double click on any task icon
generates a popup panel that allows the user to specify optional preferences such as com-

;*iB
C«mmT*Dc. ". -.TNiidTypi,:*- ' ._C«am*»tM»l:

v^-1 ■ t»t«fa™<Otfltf<lft HtchlM >ipmb«r <*«■'.■
(5.. Vd/SPHC ß|4 j3«1 [31

I j.V,.'. ' ■ ' OK j COCttt ■•■■-■
^.ijtfftwti^wt^l^^iwfaM

Figure 4: Building the Linear Equation Solver Application with the Application Editor

putational mode (sequential or parallel); domain type (Syracuse University or Rome Lab);
cluster type (HPDC cluster, CAT cluster, TOP cluster; Rome Lab Cluster); communi-
cation type (P4, socket, MPI, DSM, NCS, PVM); thread type (none, pthread, qthread,
cthread), communication protocol type (TCP/IP, ATM); machine type (SUN SPARC,
RS6000, Pentium PC, HP) and the number of processors to be used in a parallel imple-
mentation of a given task (see the right part of Figure 4). In this figure, for the MULT
task of the Linear Equation Solver the user has selected the parallel execution mode using
two nodes of Sun SPARC machines interconnected by an ATM network. When the task
properties are specified the user may either submit the application for execution in the
VDCE or store the application flow graph for future use.

3.2 Application Scheduler

The main function of the Application Scheduler module in VDCE is to interpret the appli-
cation flow graph and to assign the current best available resources for running application
tasks in order to minimize the total execution time in a transparent manner. This module
is based on application-based scheduling framework [14,15] that is currently being imple-
mented. VDCE provides distributed scheduling in a wide-area system in which each site
consists of its own Application Scheduler running on the VDCE server. The Application
Scheduler has two scheduling algorithms explained at the following pages: site scheduler
algorithm and host selection algorithm. The schedule of an AFG is determined by the
VDCE server at the local site, which runs the site scheduler algorithm, and a set of se-
lected remote sites that execute the Host Selection Algorithm. Table 1 gives the meanings
of the symbols used in the algorithms.

The site scheduler algorithm and host selection algorithm are based on the list schedul-
ing [16, 17, 18] heuristic. In list scheduling each node (task) of the graph is assigned a
priority and stored in an ordered list. In this paper node and task terms are used inter-

Table 1
Symbols and their meanings

Symbol Meaning

AFG Application Flow Graph.
Site-List The list of sites that will be part of the scheduling process.
Siocai The site that has received the application execution request.
Srcmote The set of selected A; neighbor sites of Siocai-
BW(Si, Sj) The network bandwidth between sites Si and Sj.
LT(Si, Sj) The network latency between sites Si and Sj.
Pred-Time{taski, Sj) The best predicted execution time of taski at Sj.
predJ,ime(taski, Pj) The predicted execution time of taski on Pj.
EST(taski, Sj) The earliest start time of taski at site Sj.
EFT{taski, Sj) The earliest finish time of taski at site Sj.
Predecessor(taski) The set of nodes that are immediate predecessor of taski.
ExecJime(taski, Ptent) The measured execution time of tasfa on Ptest for the trial run.
C-Load(Pj) The recent CPU load of Pj.
M-Load(PteBt) The CPU load of Ptest at the time of the trial run.
Weight(Pj) The computing weight of Pj with respect to a base processor.

changeably. Whenever a processor is available for execution the highest priority task in
the list is assigned to this processor. This process is repeated until all nodes of the graph
are covered. The difference among the list scheduling heuristics is the way in which they
assign priorities to nodes. The different priority assignment methods lead to different
selection orders that result in different schedules.

We use the level of each node to determine its priority [17]. The level of a node is
defined by the length of the longest path from the node to a terminal (or exit) node.
The length of a path in the task graph is measured by the summation of all node weights
and edge weights along the path. The node weight is the predicted execution time of
the task, and edge weight is the predicted intertask communication time. Some of the
previous works do not consider the edge weight when calculating the level of a node. For a
node weight, we use the execution time of the task (node) on a predefined base-processor
within the site. The weight of an edge between task i and task j is measured by divid-
ing the data size to be sent from task i to task j, D(i,j), to a base communication-link
bandwidth, BWf,ose. We assume that each AFG has only one root node and one exit node.

Site Scheduler Algorithm

In this algorithm, the next step after initializing the Task-List with level values of AFG
nodes is to select a set of remote sites that will be part of the scheduling process and
that may possibly be part of the execution process. If the updatcrequest flag is true, it
indicates that one or more sites in the Sremote have high network traffic (or down). In
this case, the remote sites are selected according to the network bandwidth between the
remote site and the local site (shown in steps 4-8). Otherwise, the previously stored set
is used. Then, AFG and Task-List are multicast to the involved sites for bidding, after

which the Host.Selection-Algorithm is executed at each site (step 12).

The Site Scheduler Algorithm receives the bidding from each site for each task in
AFG (step 12), i.e., the best available processor, and the predicted execution time on
the best available processor. Step 14 assigns the root task to the site that minimizes the
predicted execution time. Step 19 calculates the earliest start time (EST) of the current
task (task) at each site (Sj). To obtain the EST value of taski, the summation of the
earliest finish time (EFT) and the communication cost is calculated for each immediate
predecessor task of taski in the graph. The EFT of a task at a site is calculated by the
summation of its EST value and the predicted execution time of the task at the current
site (step 20). As shown in step 22, the best site of a node is the one that minimizes the
EFT value. The best available site for the current task is determined at each iteration
of the while-loop from step 16 to step 25. For an application flow graph AFG(v, e) with
v nodes and e edges the while-loop takes 0(v) to compute the EST value of a node on
a site (steps 15 and 16). We assume AFG to be a dense graph in which the number of
edges are proportional to 0(v2). Since there are v nodes in AFG and k sites involved in
the scheduling process, the while-loop takes 0(kv2) time; hence the time complexity of
the site scheduler algorithm is 0(kv2), since the while-loop is the dominant part. The
value of k will be much smaller than v; thus the worst case complexity of the algorithm
is 0{v2).

Site_Scheduler-Algorithm(AFG)

Step 1 Compute the level for all nodes in AFG.

Step 2 Initialize TaskJist according to a non-increasing order of node level.

Step 3 Read Sremote list and the updatejrequest flag from resource performance table.

Step 4 If updatejrequest flag is true then

Step 5 Select k nearest neighbor sites of Siocai that maximize the network
bandwidth and store them in a set, Sremote-

Step 6 updatejrequest *— false.

Step 7 Update Sremote, and updatejrequest in the resource performance table.

Step 8 endif

Step 9 SiteJList <— Siocai (J Sremote

Step 10 For each site Sj € SiteJist do
Step 11 Send AFG and TaskJist for bidding.
Step 12 {Pred.Time(taski,Sj),BestJlesource(taski,Sj)} <-

Host.Selection.Algorithm(TaskJist) V taski 6 Task-List.

Step 13 endfor
Step 14 ResourceJttlocjTable(taski) <- Sm , such that:

Pred-Time(taski,Sm) *- mm{Pred-Time(taski,Si)}, V$ 6 SiteJList.

Step 15 Remove taski from the TaskJjist.

Step 16 while TaskJjist is not empty do

Step 17 taski <— the first task in TaskJjist.

10

Step 18 For each site, Sj, in the Site-List do

Step 19 EST{tasku Sj) «- max {EFT(taskk,Sm)+(LT(Sm,Sj)+Btffs,ffgi))}
V taskk € Predecessor(taski), such that:

5m <— Resource-AllocSrdble(taskk).

Step 20 EFT(taski, Sj) <- EST(taski, Sj) + PredJ?ime(taski,Sj).

Step 21 endfor

Step 22 Select Best-Site, such that:

EFT(taski, Best-Site) <- min{EFT(taski,Sj)}, VS,- e SiteXist.

Step 23 Resource-Alloc3'able(taski) <— BestJiesource(taski, Best-Site)

Step 24 Remove iasfcj from the Task-List.

Step 25 end while

Step 26 Multicast the Resource-Alloc-Table to the relevant sites.

Host Selection Algorithm

The Host Selection Algorithm determines the task assignments of AFG tasks on the avail-
able processors within each site. The calculation of the EST is similar to the previous
algorithm. In this algorithm, base communication-link bandwidth, BWbaSe, is considered
for all connections within a site (step 4). Additionally, the latency within a site is negligi-
ble if it is compared with the latency between the different sites. The communication cost
between a task and its immediate predecessor is zero if they are scheduled to the same
processor. The core of the Host Selection Algorithm is the performance prediction phase.
The execution time prediction of a task on a a given resource is based on the current load
of the processor, load of the test processor at the time of trial run, measured execution
time for the trial run, and computing weights (step 5).

The measured execution time and the load value for the trial runs are retrieved from
the task-performance table, as explained in the Site Repository section of this paper.
Weight(Pj) is the computing weight [19, 20] of processor Pj with respect to the base-
processor at the site. To calculate the weight of each processor, trial runs of a set of task
implementations are executed on each processor. The ratio of average execution time of
the trial runs on a processor Pj to the average execution time on the base-processor gives
the computing power weight of P*. In step 6, the EFT value is the summation of the EST
and the predicted execution time. For each task, the processor that minimizes the EFT
value is selected as the best resource in this site. An iteration of the while loop takes
0(pv) times, where v is the number of nodes in AFG and p is the number of processor in
the Processor-List. Thus the time complexity of the Site Scheduler Algorithm is 0(pu2).

Host-Selection-Algorithm(Task_List)

Step 1 while Task-List is not empty do

Step 2 taski <— the first task in Task-List.

Step 3 For each available processor, Pj, in the Processor-List do

Step 4 EST(tasku Pj) <- max {E FT (taskk,Pm)+CommjCost{taskk, taski)}

11

V taskk € Predecessor(taski) such that:
Pm *- BestJtesource(taskk) and

C D(fc,t) pip.
Comm-Costitask^askt^^BW^ ^.^

Step 5 Pred.Time{taski,Pj) «- M!ltffi5i) x

Step 6 EFT(taskh Pj) «- EST(taskit Pj) + Pred.Time(taski, Pj)

Step 7 endfor

Step 8 Best-Resource{taski) <- Pfe, such that:

EFT(taski, Pk) <- min{EFT(taski, Pj)}, VPj e Processor.List.

Step 9 endwhile
Step 10 Return Pred-Time(taskit BestJlesource) and Best.Resource(taski) to 5JOCOJ

for each task.

3.3 VDCE Runtime System

The VDCE Runtime System sets up the execution environment for a given application
and manages the execution to meet the hardware/software requirements of the applica-
tion. The VDCE Runtime System separates control and data functions by allocating them
to the Control Virtual Machine (CVM) and Data Virtual Machine (DVM), respectively.
CVM measures the loads on the resources (hosts and networks) periodically and monitors
the resources for possible failures. CVM daemons control the execution of the application
tasks on the assigned resources based on the performance and quality of service require-
ments. Application visualization (real-time or post-mortem) services are provided by
CVM. DVM provides an execution environment for a given VDCE application by binding
tasks so that they can interact and communicate efficiently. DVM supports socket-based
point-to-point connections for inter-task communications.

Control Virtual Machine (CVM)

The functionality of CVM is provided by the following four processes: Site.CVM, Lo-
caLCVM, Monitor, and Cluster Manager (see Figure 5). Each VDCE machine runs a
LocaLCVM process and a Monitor daemon. Additionally, one of the machines within
each cluster executes the Cluster Manager process. Each site (domain) has a Site.CVM
process located at the VDCE Server machine. The main functions of the stated CVM
processes are given below:

• Retrieving Resource Performance Parameters. VDCE resources are periodically
monitored to collect up-to-date values of processor and network parameters that
were given in the Site Repository subsection of this paper. The Monitor daemon
of each machine periodically measures the up-to-date parameters every 30 seconds
and updates its fields at the Cluster leader machine shown in Figure 5. The Cluster
Manager daemon gathers the parameters of machines within the cluster in a table
and periodically forwards the table to the Site_CVM every 60 seconds. In the future
implementation the Cluster Manager will be modified to send only the workloads

12

of the resources that have changed considerably from the previous measurement.
The workload of a resource is significantly changed if the up-to-date measurement
is higher or lower than the summation of the previous measurement and the width
of the confidence interval [22].

Updating the Site Repository. The Site.CVM periodically updates the resource-
performance table at the site repository with the parameters that are collected from
Cluster Managers. The execution time and load measurement of benchmarking runs
of tasks are stored at the task-performance table.

Monitoring the VDCE Resources. When a Monitor daemon of a processor stores its
parameters, it reads the random number that was generated by the Cluster Man-
ager and updates its alive_check field with this value. Every 60 seconds the Cluster
Manager compares its alive_check field with each cluster machine's alive-check field.
The machines with a different value are marked as down; others are marked alive.
After the comparison, the Cluster Manager assigns a new random number for its
alive.check field. The monitor information is forwarded to the Site.CVM with the
resource parameters to be stored at the site repository. The machines that are
marked as down at the resource-performance table are not selected by the Applica-
tion Scheduler.

Sending the Related Portion of the Resource Allocation Table. After the resource
allocation table is generated by the Application Scheduler, the Site_CVM multicasts
it to the Cluster Managers that will be involved in the execution. If a machine in
a cluster is assigned for a task execution, the Cluster Manager sends an execution
request message and related parts of the resource allocation table to the LocaLCVM
of the machine.

Inter-site Coordination. As explained in Section 3.2, the Application Scheduler at
the local site selects a subset of remote sites and multicasts the application flow
graph to these sites. The remote sites run the Host Selection Algorithm locally and
transfer the mapping decisions to the sender site. The inter-site coordination and
message transfer are handled by Site.CVMs.

Initialize the Application Execution Environment. After the LocaLCVM receives an
execution request message from the Cluster Manager, it activates the DVM. The
DVMs on the assigned machines set up the application execution environment by
starting the task executions and creating point-to-point communication channels for
inter-task data transfer. Figure 6 shows the part of the execution environment of the
Linear Equation Solver application discussed in Section 3.1. Machine 1 will execute
the LU.Decomposition task, which is followed by the execution of Matrix-Inversion
tasks on Machine 2 and Machine 3. When all the required acknowledgments are
received, an execution startup signal is sent to start the application execution.

Managing the application execution. The LocaLCVM monitors the application ex-
ecution on the assigned machines and maintains the performance, fault tolerance,
and QoS requirements of the application tasks. If the current load on any of these
machines is more than a predefined threshold value, the LocaLCVM terminates

13

VDCE SERVER MACHINE
(SYRACUSE UNIVERSITY DOMAIN)

VOCE SERVER MACHINE
(ROME LABORATORY DOMAIN)

1. Retrieving the R«sourca Performance Parameters
2. Updating the Site Repository
3. Monitoring the VDCE Resources

6. Inter-sita Coordination

Figure 5: Interactions Among the Control Virtual Machine Components

NODE 1 (running the LU Decomposition Task)

(UcaLCVM)

Commwicalkxi
Proxy

LU
0*eocnpodÜon 4

NODE 3 (running the Matrix Inversion Task)

NODE 2 (running the Matrix Inversion Task) ■

(Local_CV^)

Commurfcatlcn
Proxy -^ jJEr
hUlibc

(LocaLCVtä)

'li3!4 4--* CofMnunfcaticn
Proxy

Matrix
hvankn

1. Activation of the DVM procea
2 Activation ©I lha Communication Proxy and

Requesting the Communicefion Channel Setup
3 Acknowledgement of the Comrmailcab'on Channel Setup
4 Taak Execution Startup Signa)
5 Socket-baaed Intertask CwnmuncatSons

Figure 6: Setting Up the Application Execution Environment

the task execution on the machine and sends a task rescheduling request to the
Site.CVM through the Cluster Manager.

Data Virtual Machine (DVM)

DVM is a socket-based, point-to-point communication system for inter-task communica-
tions. Therefore, any machine that supports socket programming can be part of VDCE.
As shown in Figure 6, the DVM activates the communication proxy and sends the resource
allocation information, including the socket number, IP address for target machine, etc.,
that will be used for the communication channel setup. After the setup is completed
successfully, the communication proxy sends an acknowledgment to the LocaLCVM. The
execution startup signal is sent to start the task executions.

On the other hand, for a thread-based programming environment, the Data Manager

14

consists of three threads that are initiated by the communication proxy: send thread,
receive thread, and compute thread. After the communication channel is established, the
send and receive threads are activated for data transfer and the compute thread performs
the task execution. The control transfer between the LocaLCVM and the DVM (or any
other control transfer on the same machine) are based on an inter-process communica-
tion mechanism (i.e., pipes or shared-memory paradigm). The data transfer among the
communication proxies (or between send and receive threads for multithreaded systems)
uses a socket-based, message-passing mechanism.

Since user tasks can be programmed in various message-passing tools, the VDCE
Runtime System supports multiple message-passing libraries such as P4, PVM, MPI, NCS.
Additionally, the VDCE Runtime System provides data conversions that might be needed
when an application execution environment includes heterogeneous machines. The VDCE
Runtime System provides several user-requested services such as I/O service, console
service, and visualization service. A user can request these services while developing
his/her application with the Application Editor. I/O Service provides either file I/O or
URL I/O for the inputs of the application tasks. The user can suspend and restart the
application execution with the console service. The VDCE visualization service provides
both real-time and post-mortem visualizations. There are three types of visualizations
provided in VDCE:

• Application Performance Visualization: The execution time of tasks in an applica-
tion is visualized.

• Workload Visualization: Up-to-date workload information on VDCE resources is
visualized.

• Comparative Visualization: VDCE makes it possible for an end user to experiment
and evaluate his/her application for different combinations of hardware and software
medium by providing the comparative performance visualization.

4 VDCE Testbed: Experimental Results and Discussion

The current VDCE prototype consists of two sites, one at Syracuse University and the
other at Rome Laboratory, that are connected by the NYNET ATM Wide Area Network,
as shown in Figure 7. Each site or domain has a VDCE server, a Site Repository and
several computing clusters. At the Syracuse University site there are three computing
clusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switches
and ATM concentrators that connect high-performance workstations and PCs at a rate
of 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CAT
clusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATM
cluster through the Ethernet. The Rome Lab site consists of three clusters that include
SUN, Digital, and HP workstations.

In this section we discuss and evaluate the performance of the current VDCE proto-
type in implementing two important tasks: 1) The use of VDCE as an evaluation tool

15

HPDC Oust» SUN
IBM mi

■SSI O HI

\ • \ SUKCtast»

SU Domain RomtfLab Domain 5_EI?'

/ Mr-7!

 """ «th«mtt yD£j i
Repmltofy I

\ VDCE
\ Repository

•Uwrnot

Figure 7: The configuration of the VDCE Testbed

for the parallel implementations of the VDCE library tasks using different numbers of
workstations, and different networks to connect them (e.g, ATM or Ethernet); and 2)
The use of VDCE as a problem-solving environment for large-scale VDCE applications.

4.1 Experiment 1: Using VDCE as a Parallel Evaluation Tool

In this experiment we used the matrix multiplication (MULT) task as a running exam-
ple to show the use of the VDCE for experimentation and to evaluate the performance
of different configurations when the number of computers, network types, and problem
sizes are changed. We compared the time and effort required to perform such tasks with
and without using the VDCE. We benchmarked the sequential and parallel algorithms
of Matrix multiplication(MULT) based on various machine and network configurations
and problem sizes. The parallel implementation of MULT (A x B = C) task is based on
the host-node programming model. The master process distributes the rows of matrix A
evenly among the processes (where each process runs on one workstation) while all the
slave processes receive the entire B matrix. Each slave process computes its part of result
matrix C and sends it back to the host process.

The VDCE provides a web-based, user-friendly interface that allows a novice pro-
grammer to experiment with and evaluate different parallel configurations of each VDCE
task in minutes. We argue that performing similar evaluation tasks is almost impossible
for novice programmers and requires hours and even days to be performed by an expert
programmer using parallel processing and message passing and visualization tools. With
VDCE, once a task library is registered to the VDCE site repository, any VDCE user can
use that task or any existing VDCE task by just clicking on the task name in the Appli-
cation Editor. Once the task is selected, the user can click on one button to determine
the problem size, the number of computers to be involved in the computation, and the

16

network to be used to connect them. Selecting the VDCE task and specifying how it will
be implemented can be done in a few minutes. Once that is done, the task configuration
can be run and its execution time visualized immediately without any effort other than
clicking on the execute and visualize buttons.

Figure 8 shows the execution times of the VDCE-based, matrix multiplication algo-
rithm for 512 x 512 and 1024 x 1024. The result for p4-based implementation of the same
multiplication algorithm is given in Figure 9. The experiments were done for one, two
and four Sun SPARCs that are connected by an IP/ATM network. We also evaluated
the performance of MULT task on a heterogeneous cluster of four SUN SPARCs and four
IBM RS6000 workstations. The objective of such an evaluation is to provide users with
a better understanding of the performance of parallel processing algorithms when there
is a change in problem size, number of nodes, or network type. As an example, for the
p4-based, matrix multiplication algorithm, we can determine from Figure 9 that eight
nodes provide the best performance among the test cases.

problem size = 512x512,1024x1024 (ATM)

t 2 4
Number of Machines

Figure 8: Execution Time of Matrix Multiplication Task Using VDCE

Table 2 compares the times required to develop, compile, execute, and visualize a
Matrix Multiplication task using p4 and VDCE for a 1024 x 1024 problem size with four
nodes. In the design and implementation phase, it takes around 862 minutes for a par-
allel programming expert to develop a p4-based multiplication program from scratch if
we assume that programming speed is two minutes per line. If the programmer has no
experience with p4, he/she will spend more time to learn about it and to develop an
application. For VDCE, even if the user does not have any knowledge about parallel
programming, but wants to run the application in parallel, the only thing he/she needs
to do is to choose the parallel option in the application design window of the Application
Editor. Additionally, he/she can easily define the I/O for a task using the Application
Editor. The total time for developing a VDCE MULT application is 2.10 minutes.

17

Problem Size:1024x1024

PHP

Uli mm
m m m

Number of Machines

._. ATM
81 Etharnel

Figure 9: Execution Time of Matrix Multiplication Task Using p4

Table 2
The performance comparison of matrix multiplication task for each software phase

Phase p4

Design and development

Compilation
Runtime setup
Task execution
Visualization and evaluation 1890sec.

862 min.
(431 lines)
7.01 sec.
0.980 sec.
0.194 sec.

VDCE

2.10 min.

0 sec.
0.015 sec.
0.136 sec.
0.095 sec.

18

There is no compilation time in VDCE after the VDCE MULT application is designed.
The location of the executable for MULT task on the selected resource is provided in the
resource allocation information, which is retrieved from the task constraints table. The
executable is then linked to the I/O module. In the p4 version the MULT program takes
7.01 seconds for compilation. The runtime setup time in VDCE is for the CVM to transfer
the activation and resource allocation information to DVM and to wait for the acknowl-
edgment, which takes 15 milliseconds for the MULT task on the selected resource. For
a p4 application, the user creates a configuration file, i.e., procgroup file, and manually
links it to the p4 application which takes 980 milliseconds. VDCE runs the application
automatically with the "Execute Application" button and generates the results in the
selected output file. The execution time of MULT task is 136 milliseconds when it is
executed on four nodes over the ATM. The execution time is 194 milliseconds using a p4
program with the same configuration.

VDCE provides dynamic and post-mortem visualization of the application. A VDCE
user monitors the load of all machines dynamically in the domain and he/she can consider
the load information to select an appropriate machine and/or a cluster. In addition, the
execution time of each module within an application is visualized in VDCE. It takes
95 milliseconds to invoke the VDCE visualization window for the MULT task. If a p4
user wants to visualize the execution time to compare its performance with others, it is
necessary to use another graphic tool. The visualization and evaluation time depends on
which tool is used; as an example, "gnuplot" takes 1890 seconds.

4.2 Experiment 2: Using VDCE as a Problem Solving Environment

In this experiment we demonstrated how the VDCE can enable a novice programmer to
develop large-scale parallel and distributed applications running on geographically dis-
tributed heterogeneous resources. Implementing such applications is currently a challeng-
ing programming problem and time consuming for experts on parallel and distributed
programming tools. A distributed application can be viewed as an Application Flow
Graph (AFG), where its nodes denote computational tasks and its links denote the com-
munications and synchronization between these nodes. Without an application develop-
ment tool, a developer or development team must apply much effort and time to develop
a distributed application from scratch. The VDCE provides a web-based interface to
enable users to develop, configure, execute, and visualize such a distributed application
in a few minutes. However, to perform the same tasks in a non-VDCE case, the user
or team developers need to develop techniques to interact and communicate the modules
running on different computers, and they need to develop or integrate techniques to run
and manage the execution of the distributed application, as well as collect and visualize
the required performance results.

To solve these difficulties, VDCE provides an integrated problem solving environ-
ment to enable novice users to develop large-scale, complex, distributed applications us-
ing VDCE tasks. The Linear Equation Solver (LES) application has been selected as a
running example. Figure 4 shows the AFG of Linear Equation Solver, which consists of
an LU Decomposition (LU) task, two Matrix Inversion (INV) tasks and Matrix Multi-
plication (MULT) tasks. The problem size for this experiment is 1024 x 1024 using four

19

Table 3 1
Performance comparison of linear equation solver application for each software phase

p4 ~ VDCE

Phase LU INV MULT LU INV MULT

Design and development 838 min. 1314 min. 862 min. 2.10 min. 1.57 min. 2.30 min.
(419 lines) (657 lines) (431 lines)

Compilation 6.45 sec. 8.10 sec. 7.01 sec. 0 sec. 0 sec. 0 sec.
Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec
Task execution 0.386 sec. 0.556 sec. 0.194 sec. 0.801 sec. 1.360 sec. 0.140 sec

Application execution 1-691 sec. 1-451 sec.
Application visualization 3200 sec. 0.140 sec.

nodes, which are SUN SPARCs and IBM RS6000 machines that are connected by an

ATM network.

Table 3 compares the timing of several software phases for a Linear Equation Solver
application using p4 and VDCE. When a user has enough knowledge about parallel pro-
gramming and the p4, he/she will spend 838 minutes for an LU task, 1314 minutes for
an INV task, and 862 minutes for MULT task. The total time to develop the application
for a non-VDCE version is approximately 3014 minutes, (i.e., around 50 hours). Using
VDCE, a novice user spends around six minutes to develop such an application. There is
no compile time for VDCE, but a p4 application needs 21 seconds for compilation. The
VDCE setup time for a Linear Equation Solver application is 43 milliseconds. The p4
user should create all procgroup files and launch them in order, which takes around eight

seconds.

Since the VDCE is based on the data flow model and executes tasks automatically,
there may be overlap among task executions that causes the total execution time of the
VDCE application, including the setup time, to be less than the summation of all individ-
ual task execution times. In our experiment with the Linear Equation Solver application,
the total execution time of p4 parallel execution using four nodes is 1691 milliseconds.
A VDCE-based execution with the same configuration takes 1451 milliseconds, which

outperforms the p4 by 16%.

5 ADAPTIVE DISTRIBUTED VIRTUAL COMPUTING ENVIRONEMNT
(ADViCE)

5.1 Introduction

With the proliferation of wireless networks, metacomputing services can be extended to
include mobile users and resources. A mobile metacomputing environment allows users

xThe last two rows of the table are for the total time of the application.
2It is the total setup time for a VDCE-based linear equation solver application.

20

not only access to information servers from mobile computers, but also enables them to
develop, run, and visualize large scale parallel and distributed applications running on
heterogeneous computers that are connected by wired and wireless networks.

The main goal of the ADViCE project is to extend the current VDCE to support
mobile users and resources. ADViCE provides a parallel and distributed programming
environment; it provides an efficient web-based user interface that allows users to develop,
run and visualize parallel/distributed applications running on heterogeneous computing
resources connected by wired and wireless networks. Consequently, the fact that some of
the resources are mobile such as users, computers, storage devices and networks become
transparent to the users and the application developers.

5.2 Related Work

In this section we provide a brief overview of the issues related to parallel and distributed
programming environments and mobile computing.

5.3 Parallel and Distributed Software Development Issues

The software development process of parallel and distributed applications can broadly be
described in terms of three phases: a) Application design and specification, b) Application
scheduling and resource configuration, and c) Application execution and runtime.

• Application Design and Specification: In a well-integrated execution envi-
ronment it is important to provide: a) an easy-to-use interactive user-interface to
design and specify parallel distributed applications and, b) well-developed graphical
utilities for the visualization of results and program behavior. Generally, writing
parallel and distributed programs overwhelms users due to the difficulty of explic-
itly expressing communication and synchronization among the computations [7].
A graph-based programming environment, in which a program is defined as a di-
rected graph where nodes denote computations and links denote communication and
synchronization between nodes, may be used to decrease the work of programmers.
Currently, there are a few visual parallel programming languages and environments,
such as Computationally Oriented Display Environment (Code) [11], Heterogeneous
Network Computing Environment (HeNCE) [12], and Zoom [13]. To develop a Code
or HeNCE application, a programmer first expresses the sequential computations in
a standard language and then specifies how they are to be composed into a parallel
program. Zoom is a hierarchical abstraction for describing heterogeneous appli-
cations. Zoom representation of an application can be translated into a HeNCE
program for execution [12]. Currently, there is an increased interest in developing
web-based application development tools and environments because of the explosive
use of internet applications [29].
ADViCE graphical user interface is web-based GUI and has been developed using
JAVA programming language and JAVA servers.

• Application Scheduling and Resource Configuration After the is specified
and developed, the application tasks need to be assigned to the available computing
and storage resources. In the literature, although the task scheduling (or resource

21

allocation) problem has been investigated extensively, most of the algorithms and
systems are valid only for specific architectures and/or certain class of applications.
One interesting general scheduling framework is the APPLeS [14]. The APPLeS
proposes application-level scheduling in which all system aspects are evaluated with
respect to application performance. APPLeS develops a customized schedule for
each application by including user-specific, application-specific, system-specific, and
dynamic information in its scheduling decision. There are resource management
systems to provide load sharing and resource allocation such as the Condor project
that has been developed at the University of Wisconsin [31]. Condor is a distributed
batch system for sharing the workload of compute-intensive jobs in a pool of UNIX
workstations connected by a network. In ADViCE, we follow similar approach to
APPLeS, where for each parallel and distributed application, the system generates
at runtime an adaptive schedule that can optimize the requirements of an application
such as performance, fault-tolerance, or security.

• Application Execution and Runtime: The application execution and runtime
phase executes the developed and configured application. This stage integrates the
assigned resources that have been assigned to run the application tasks. The soft-
ware tools used for the execution of the application can be either based on message-
passing tools such as PVM [23], P4 [25], MPI [24], and NCS [26] or based on
distributed shared memory (DSM) [3, 4, 5, 6]. In addition, there are a few projects
targeted toward providing a metacomputing environment on diverse resources. The
earliest metacomputer, the NCSA Metacomputer [27], was an integration of several
MPPs, mass storage units, visualization and I/O devices. Globus [21], Legion [28],
and VDCE [8, 10] targeted toward the development of metacomputing environ-
ments. Additionally, there are several web-based metacomputing projects [29], that
either use the JAVA programming language as the main computation language or
provide a coordination medium based on WWW technologies or the JAVA language.
There may be some drawbacks to these methods. First, they may not support the
programs written in other languages such as C and Fortran. Second, they may sup-
port communication only between a server and a client, which restricts the execution
of the candidate applications. The ADViCE runtime system is based on message
passing tools and is implemented using P4 and NCS. We also using JAVA and web-
servers to perform all the control, management and visualization functions, while
we use C, C++, Fortran, and any other language to program the application tasks.
In other words, our approach is open and can support any language to implement
the application tasks.

5.4 Mobile Computing Issues

Mobile computing is increasingly becoming an important programming environment and
there has been very little research to address the programming issues in such an envi-
ronment and how to integrate it into the current parallel distributed programming envi-
ronments with stationary resources. The main characteristics and constrains of mobile
computing are [1, 2]: 1) The use of wireless networks make mobile resources resource-
poor relative to stationary resources and the communication performance and reliability
varies widely, 2) Mobile resources complicates the issues related to resource locations and

22

portability, and 3) Mobile resources rely on a finite energy resource. The main limita-
tions of developing mobile parallel and distributed programming environments include
the following:

• The use of wireless networks implies that applications will experience low trans-
fer rate and unreliable communication links. We expect this limitation to ease in
the future as the use of wireless technology expand and more progress is made in
increasing the transfer rate over wireless networks.

• The current techniques to support dynamic task migrations and adaptive resource
configurations are rigid and can not run efficiently when the computing and storage
resources are fixed and/or mobile. For example, it is possible that some of the tasks
associated with a parallel and distributed application could be running on several
high performance computers that are connected by a fiber-optic high speed network
while other tasks are running on computers that are connected by a low speed,
unreliable wireless network. The performance of this application will drastically
affected by the performance of the communication services offered by the wireless
network.

The main goal of the ADViCE prototype is to integrate stationary parallel and dis-
tributed computing environment with mobile computing. We developed an efficient ap-
proach to support adaptive programming and services for both mobile and stationary
resources. In general, there are two extremes for supporting adaptation [1]: 1) Make
the adaptation is entirely the responsibility of individual applications, and 2) Make the
adaptation is completely transparent to the application and thus must be supported by
the system. The first approach avoids the need for system support, but it lacks the ability
to resolve incompatible resource demands of different applications and to enforce limits
on resource usage. The second approach since it can support adaptivity to existing appli-
cations so they can run on mobile resources without any modifications. The adaptivity
approach supported in ADViCE is a combination of these two schemes. The user can
specify during the application development the application adaptivity requirements. The
ADViCE runtime system is responsible for maintaining the adaptivity requirements of
the application during its execution.

5.5 Overview of ADViCE Architecture

The ADViCE can be viewed as a collection of geographically dispersed computational
sites or domains, each of which has its own set of ADViCE servers as shown in Figure 10.
In any ADViCE, the users, fixed or mobile, access the ADViCE servers (Visualization and
Editing Server (VES) and Control and Management Server (CMS)) to develop parallel
and distributed applications that can run on fixed or mobile computing resources (see
Figure 10). In ADViCE, the users are provided with a seamless parallel and distributed
computing environment that provides all the software tools to develop, schedule, run
and visualize large scale parallel and distributed applications. In other words, ADViCE
supports the following types of transparency:

• Access Transparency: The users can login and access all the ADViCE resources
(mobile and/or fixed) regardless of their locations.

23

• Mobile Transparency: ADVICE supports in a transparent manner mobile and fixed

users and resources.

. Configuration Transparency: The resources allocated to run a parallel and dis-
tributed application can be dynamically changed in a transparent manner; that is
the applications or users do not need to make any adjustment to reflect the changes

in the resources allocated to them.

• Fault-Tolerance Transparency: The execution of a parallel and distributed appli-
cation can tolerate failures in the resources allocated to run that application. The
number of faults that can be tolerated depends on the redundancy level used to run

the application.

• Performance Transparency: The resources allocated to run a given parallel and
distributed application might change dynamically and in a transparent manner to
improve the application performance.

Figure 10: Adaptive Changes in the ADViCE environment.

Due to some changes in the network traffic or failures, it might be necessary to move
the execution environment of one application from one ADViCE domain to another as
shown in Figure 1. During the switching from one ADViCE environment to another,
one or more ADViCE servers as well as the resources allocated to run a given ADViCE
application might be switched. In Figure 1, when the application execution environment
is switched from ADViCEl to ADV1CE2, the VES is changed while the CMS is kept the

same in both environments. .,,..,.
Our approach to implement the ADViCE architecture is based on identifying a set

of servers that are essential to provide the required tools for any parallel and distributed

24

programming environment. The current prototype is built using two web-based servers as
shown in Figure 2: Visualization and Editing Server (VES) and Control and Management
Server (CMS). The ADViCE architecture can be generalized to more than two servers.
However, in our implementation, we used only two servers to simplify the implementation
of the required ADViCE services. The VES provides all the editing and visualization ser-
vices essential for the application development, while the CMS provides all the services
required to schedule, control and manage the execution of the application so it can dy-
namically adapt its execution environment to maintain its quality of service requirements.
In what follow, we briefly describe the basic services offered by the ADViCE servers.

Application
Repository
Database

ADViCE "
Visualization &

Editing
Server (VES) ,

-«-*>
Application

Editing
Service

<«-►
Application

Visualization
Service

ADViCE
Control &

Management
Server (CMS)

/

Application
Management

Service

\

Application
Resource
Service

r Application "*
Control
Service

<—►
Application

Data
Service

Figure 11: The Main Components of the ADViCE Architecture.

5.5.1 Visualization and Editing Server (VES)

This server provides two main application development services: Application Editing
Service (AES) and Application Visualization Service (AVS).

description Application Editing Service (AES)

The AES is a web-based graphical user interface for developing parallel and
distributed applications. The AES provides users with commands to develop
and run a new or an existing parallel and distributed application. The main
functions offered by the AES are connection establishment and application
editor.

• Connection Establishment: Before the end-user connects to the ap-
propriate VES, a default server is initially used to fulfill the logical-
physical mapping. The default VES will determine the appropriate VES

25

server based on user's location and current system performance parame-
ters. Once the appropriate VES is identified, then the authorization and
authentication procedures are invoked by the selected VES server before
the user is allowed to use the ADViCE services. After the user passes
successfully all the security procedures, the AES invokes the Application
Editor window to support the user with the tools required to develop
parallel and distributed applications.

Application Editor: The application editor provides menu-driven task
libraries that are grouped in terms of their functionality, such as matrix
algebra library, command and control task library, etc. A selected task
is represented as a clickable and draggable graphical icon in the active
editor area. Using the application editor, the user can develop an Ap-
plication Flow Graph (AFG) which is a directed graph where the nodes
denote library tasks and links denote the communication/synchronization
between the nodes. The application editor provides also users with the
capability to specify task configuration; that is whether to run each task
in sequential or in parallel, and if in parallel how many nodes to execute
that task (see Figure 12).

SVSTEM «OIT„. EXECUTE VISlMUtt ',> lUE^edula. Elementary^Spedal Matrix J>ata_Analysfc polynomial/fnterpolatjor, s .\

MJscilltneoui

SSW« m fits
pimp

.£,a Unsigned J«» <W«t Uindon

y^l. ,' Computation . Typ« : Domain: cluster: •
■ ■ I - • ■• • ■-. jrr

•»Sequential v Parallel |BB«1»"«»»» |-|H

Thread Type: Com m Protocol: »Cswtfifirpeg

SSiäSIlP

' 2ia Uroisrä ^ai'f^l^ffe*«-!

Figure 12: An Application Flow Graph Example.

description Application Visualization Service (AVS)

This service enables the user to visualize the application execution time and
system runtime parameters. For example, Figure 13 shows the execution time

26

for each task in the application shown in Figure 12. In addition, the AVS
shows the total execution time of the application and the setup time of the
application execution environment.

SlxecuWon li«* Vmiali^^

P2tfl0_ms

§m

H
*.M - . if i it's** ^~ &S8589®sBSSs«ffi&

..*.^ . J£.:L*" ^,_^1?-.V..A s _i ;^5^^S:1^:5!^:

M^i^K£*2<^ TILS 12419ms ~ m
LU_3 ' ttWJt INV_S . MULT_V_<5 MULT_V_7 Setup ? Total

lExecTlmel CLOSE 1

Figure 13: The Performance of each Application Task.

5.5.2 Control and Management Server (CMS)

The main services of the CMS include Application Resource Service (ARS), Application
Management Service (AMS), Application Control Service (ACS), and Application Data
Service (ADS). In addition, the CMS maintains two databases (see Figure 2): one to store
the configuration and status information about the resources available in an ADViCE do-
main (a domain is a distributed computing environment controlled by one organization
or an administration), and one database to store the task performance information (e.g.
execution times of each ADViCE library task on different computing platforms). The task
performance database is used to estimate the task execution time on different computing
platforms and is used by the ARS to optimize the allocation of resources to application
tasks.

description Application Resource Service (ARS)

The main functions of the ARS is to interpret the application flow graph gen-
erated by the AES and then allocates resources to the application tasks to
optimize certain criterion such as performance, fault-tolerance, or any other
requirements specified by the user. The main functions of the ARS include
Performance-based Scheduling, Security-based Scheduling, and Fault Tolerance-
based Scheduling. The performance-based scheduling determines the mapping

27

of tasks to resources that will maximize the application performance, while
the security-based scheduling allocates to the application tasks only the re-
sources that meet that application security requirements. Similarly, the fault
tolerance based scheduling allocates redundant resources to run each applica-
tion task such that the application execution can tolerate certain number of
failures in the resources allocated to execute the application. In addition, the
ARS provides application rescheduling capability in order to reallocate some
of the application tasks whose executions have been interrupted due to some
changes in network and system resources; these changes could be triggered be-
cause of the mobility of resources or software/hardware failures in the ADViCE

resources.
description Application Management Service(AMS) The AMS utilizes
standard management functions to control and manage the execution of par-
allel and distributed applications. The AMS provides ARS with management
information about ADViCE resources to optimize the allocation of application
tasks to the currently available ADViCE resources. The AMS also provides
a well defined interface that enables other software modules (e.g. ARS, ACS,
ADS) to access any management information required to achieve real-time
adaptive services.

description Application Control Service (ACS)

The ACS provides applications with the required services to setup, run, con-
trol and manage their execution within the ADViCE. The main ACS functions
include setting up the application execution environment, monitoring the ap-
plication execution, and collecting the task performance information required
for the visualization of the application execution. In setting up the application
execution environment, the ACS launches a proxy process (we refer to as the
local-ACS) at each machine selected for the application execution according
to the Allocation Channel Table (ACT) generated by the ARS. This involves
setting up socket connections between the CMS and the client machines. The
local-ACS periodically updates the task performance database and notifies the
CMS of any runtime errors.

description Application Data Service (ADS)

The ADS provides services to establish high speed communication data paths
between the application tasks. In addition, ADS supports limited task manage-
ment functions such as data conversion, task migration, handling user request
exception, and periodically monitoring the task performance.

5.6 ADViCE Adaptation Approach

One important goal of the ADViCE is to deliver an adaptive parallel and distributed com-
puting environment that can automatically modify its configuration based on the changes
in the environment. These changes could be due to failures in hardware, software failure,

28

mobility of resources, or bursty network traffic. The ADViCE adaptation approach fol-
lows three important phases or steps: 1) Change Detection, 2) Analysis and Verification,
and 3) Adaptation Plan. This approach is similar to the adaptation approach proposed
to achieve fault tolerance distributed computing [32]. For each ADViCE service (AES,
AVS, ARS, ACS, ADS), we develop the appropriate algorithms to detect the changes in
the service once it occurs, to analyze and verify the detected changes in the service, and
finally carry out the steps defined in the adaptation plan associated with that service.
Figures 14, 15, 16, and 17 show the ADViCE Adaptation Algorithm and procedures.

The Application Execution Environment (AE(Appi)) denotes all the resources allo-
cated to run application Appi. While the application is running (Step 1 in the ADViCE
Adaptation Algorithm of Figure 14), the ACS monitors all the ADViCE services (Steps 2
through 26 in the ADViCE Adaptation Algorithm of Figure 14) associated with that ap-
plication to detect any possible changes or deterioration in the application performance.
Once any change is detected, the change detection procedure associated with the service
that has experienced the changes is invoked (Steps 4, 10, 16, and 22 in the ADViCE
Adaptation Algorithm of Figure 14). For example, assume during the application devel-
opment, the mobile user has experienced an excessive delay because the AES service is
running on a VES server that is outside the current location of the mobile user. This
is detected when the AES monitoring routine discovers that the communication delay to
the VES server is larger than the acceptable Dmax (Step 1 in Change_Detection_AES of
Figure 15). Once that delay is detected, the Verification and Analysis procedure for that
service is invoked (Step 6 in the ADViCE Adaptation Algorithm of Figure 14). In a
similar manner, we device detection algorithms for each service offered by the ADViCE
servers (VES and CMS) as shown in Figure 16.

The Verification and Analysis procedures shown in Figure 16 involves analyzing the
current state of the system resources by using the AMS services to validate and identify
accurately the event(s) that contributed to the changes if they were proven to be true
and not false or transient. For example, if the change detection procedure of the ADS
has determined the EventType to be "link failure" (Step 4 in Change_Detection_ADS
of Figure 15). This event could be caused by the machine being down or task failure
(Step 11 through 18 in Verification_A.nalysis_A.DS of Figure 16). The verification and
analysis could be simply reading the OperStatus in the interface MIB associated with
each communication link used for the inter-task communications. If the status of is found
to be caused by machine failure, then the EventCause is assigned as "machine down" and
then the Adaptation Plan associated with ADS is invoked as shown in Figure 14 (Step
25).

The Adaptation Plan procedures involves taking the appropriate actions to enable
the ADViCE to adapt to the changes that have been detected and verified. The adapta-
tion plan procedure invoke the appropriate operations associated with the adaptation of
each service. For example, the adaptation plan for the ADS associated with "task down"
could be to restart the application execution from the beginning (Step 17 in Adapta-
tionJ?lan_ADS of Figure 17).

29

procedure ADViCE-Adaptation.Algorithm
1 while (AE{Appi) is running) do {
2 monitor ADViCEServices
3 monitor AES
4 EventType «- Change.Detection.AES()
5 if EventType ^ Normal
6 EventCause <- Verincation_A.nalysis_AES(.EventType, AE{Appi))
7 Adaptation-Plan-AES(£i;entCause, AE(Appi))

8 endif
9 monitor AVS
10 EventType «- Change.Detection_AVS()
11 if EventType ^ Normal
12 EventCause «- Verincation-Analysis_AVS(.Ei>entrype, A£(4ppi))
13 Adaptation_Plan_AVS(£ueniCause, A£(Appi))

14 endif
15 monitor ACS
16 EventType «- Change.Detection_ACS()
17 if EventType j= Normal
18 EventCause «- Verification_A.nalysis_ACS(JSventType, AE(AppO)
19 Adaptation.Plan_ACS(.EueniCause, AJS(Appi))

20 endif
21 monitor ADS
22 EventType <— Change-Detection_ADS()
23 if EventType jt Normal
24 EventCause <- Verification_A.nalysis_ADS(B«entrype, Aß(Appi))
25 AdaptationJPlan_A.DS(.EwntCaiise, A£(Appi))

26 endif
27 } endwhile

end of ADViCE-Adaptation .Algorithm

Figure 14: ADViCE Adaptation Algorithm

30

procedure Change_Detection_AES()

1 »f tconnect{VES) > Dmax
2 EventType = unacceptable delay to VES
3 else if unable to locate VES
4 EventType = VES down
5 else if unable to locate the database server
6 EventType = database down

7 else
8 EventType = Normal
9 endif
10 return(jBventTj/pe)

end of Change.Detection_AES

procedure ChangeJDetection_ADS()
1 if inter task communication delay > Dmax
2 EventType = inter task communication delay
3 else if broken pipe detected
4 EventType = link failure

5 else
6 EventType = Normal
7 endif
8 ret\im(EventType)

end of Change_Detection_ADS

Figure 15: ADViCE Change Detection Procedures

31

procedure Verification_A.nalysis_AES(ßwntType, AE(Appi))
1 case EventType = unacceptable delay to VES
2 verify delay to VES
3 if measure the delay to VES > Dmax
4 check if the delay is caused by the location of VES
5 EventCause = location change of VES
6 check if the delay is caused by the location of the user
7 EventCause = user's location change
8 check if the delay is caused by heavy load VES
9 EventCause = heavily loaded VES

10 endif
11 case EventType = VES down
12 verify VES down by AMS MIB
13 if true
14 check if VES down is caused by the VES machine failure
15 EventCause = VES machine down
16 endif
17 case EventType = database down
18 verify database down by AMS MIB
19 if true
20 check if database down is caused by database machine down
21 EventCause = Application Repository database machine down
22 check if database down is caused by database server down
23 EventCause = Application Repository database server down

24 endif

25 retum(EuentCause)
end of Verification_Analysis_A.ES

procedure Verification_Analysis_ADS(ßiientType, AE{Appt))
1 case EventType = inter task communication delay
2 verify the communication delay
3 if measure inter task delay > Dmax

4 check if the delay is caused by heavy network traffic
5 EventCause = heavy traffic
6 check if the delay is caused by heavy load
7 EventCause = heavy CPU load
8 endif
9 case EventType = link failure
10 verify link failure by AMS MIB
11 if true
12 check if link failure is caused by machine down
13 EventCause = machine down
14 check if link failure is caused by task down
15 EventCause = task down
16 endif

17 return(ßuentCause)
end of Verification_Analysis_A.DS

Figure 16: Verification and Analysis Procedures

32

procedure Adaptation-Plan_A.ES(JSuentCouse, AE(Appi))
1 case EventCause = location change of VES or
2 EventCause = user's location change or
2 EventCause = heavily loaded VES or
3 EventCause = VES machine down
4 | access the default VES
5 | locate a new VES
6 j transfer the information from current VES to a new VES
7 case EventCause = Application Repository database machine down
8 | choose alternative Application Repository database
9 case EventCause — Application Repository database server down
10 I start the database

end of Adaptation.Plan_AES

procedure Adaptation-Plan_A.DS(iJuentCause, AE(Appi))
1 case EventCause = heavy traffic or
2 EventCause = heavy load or
3 EventCause = machine down
4 | invoke ARS to assign a new machine
5 | if migration required
6 | task migration
7 j endif
8 | if partial recovery is possible
9 | resume from the stopped task
10 j else
11 j resume from the task check pointed state
12 j endif
13 case EventCause = task down
14 | if partial recovery is possible
15 | resume from the task check pointed state
16 j else
17 | start the application from the beginning
18 endif

end of Adaptation_Plan_ADS

Figure 17: Adaptation Plan Procedures

33

6 ADViCE Testbed: Experimental Results and Discussion

The current ADViCE prototype consists of two sites, one at Syracuse University and the
other at Rome Laboratory, that are connected by the OC3 ATM Wide Area Network, as
shown in Figure 18. We are currently setting up a new site at the University of Arizona.
Each site or domain has two ADViCE servers that manage the computing and network
resources available in their site. At the Syracuse University site there are three computing
clusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switches
and ATM concentrators that connect high-performance workstations and PCs at a rate
of 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CAT
clusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATM
cluster through an Ethernet network. The Rome Lab site consists of three clusters that
include SUN, Digital, and HP workstations.

HPDC Cluster
IBM um

SUN

li-^jfi?Mij SP Domain RonWLab Domain

• SUN Cluster

1

Figure 18: The configuration of the current ADViCE Testbed.

In this section we discuss and evaluate the performance of three important functions
supported by the ADViCE prototype: 1) Task Performance Evaluation Tool, 2) Problem-
Solving Environment, and 3) Adaptation Support.

6.1 Experiment 1: Using ADViCE as a Parallel Evaluation Tool

In this experiment we used the matrix-vector multiplication (MULT.V) task as a running
example to evaluate the use of the ADViCE prototype as an evaluation tool to analyze the
performance of different configurations when the number of computers, network types,

34

and problem sizes are changed. We compared the time and effort required to perform such
tasks with and without using the ADViCE prototype. We benchmarked the sequential
and parallel algorithms of matrix-vector multiplication(MULT_V) based on various ma-
chine and network configurations and problem sizes. The parallel implementation of the
MULT.V (A x B = C) task is based on the host-node programming model. The master
process distributes the rows of matrix A evenly among the processes (where each process
runs on one workstation) while all the slave processes receive the entire B matrix. Each
slave process computes its part of the result matrix C and sends it back to the host process.

The ADViCE provides a web-based, user-friendly interface that allows a novice pro-
grammer to experiment with and evaluate different parallel configurations of each AD-
ViCE task in a few minutes. We argue that performing similar evaluation tasks is almost
impossible for novice programmers and requires hours and even days to be performed
by an expert programmer in parallel processing, message passing and visualization tools.
Using ADViCE prototype, once a task is registered in the ADViCE task library, the user
can use that task or any other library tasks by just clicking on the task name in the
Application Editor window. Once the task is selected, the user can specify the desirable
configuration to run the selected task; specify the number of computers to be involved in
the computation, and the network to be used to connect them if the task is going to run
in parallel. Selecting the ADViCE task and specifying how it will be implemented can be
done in a few minutes. Once that is done, the task configuration can be executed and its
execution time can be visualized immediately without any effort other than clicking on
the execute and visualize buttons in the Application Editor window.

Figure 19 shows the execution times of a matrix multiplication algorithm for two
problem sizes, 512 x 512 and 1024 x 1024. The result for a p4-based implementation of
the same multiplication algorithm is given in Figure 20. The experiments were done for
one, two and four Sun SPARCs that are connected by an IP/ATM network. We also
evaluated the performance of the MULT.V task on a heterogeneous cluster of four SUN
SPARCs and four IBM RS6000 workstations. The objective of such an evaluation is to
provide users with a better understanding of the performance of parallel algorithms when
there is a change in problem size, number of nodes, or network type. As an example,
for the p4-based implementation of the matrix-vector multiplication algorithm, we can
determine from Figure 20 that eight nodes provide the best performance among the test
cases.

Table 4 compares the times required to develop, compile, execute, and visualize the
Matrix-Vector Multiplication task using p4 and the ADViCE prototype for a 1024 x 1024
problem size with four nodes. In the design and implementation phase, it takes around
862 minutes for a parallel programming expert to develop a p4-based multiplication pro-
gram from scratch if we assume that programming speed is two minutes per line. If the
programmer has no experience with p4, he/she will spend more time to learn the tool and
then implement the parallel algorithm. For the ADViCE, even if the user does not have
any knowledge in parallel programming, but wants to run the application in parallel, the
only thing he/she needs to do is to choose the parallel option in the task configuration
window of the Application Editor. The total time for developing the ADViCE MULT.V
application is 2.10 minutes rather than 862 minutes if one needs to develop the application

35

problem size = 512x512,1024x1024 (ATM)

2 4 8
Number of Machines

Figure 19: The Performance of the ADViCE Implementation of the Matrix-Vector Mul-
tiplication.

Problem Size:1024x1024

Number of Machines

ATM
Ethernet

Figure 20: The Performance of the P4 Implementation of the Matrix-Vector Multiplica-

tion.

36

Table 4
The performance comparison of the matrix-vector multiplication task for each software development phase

Phase p4 ADViCE

Design and development 862 min. 2.10 min.
(431 lines)

Compilation 7.01 sec. 0 sec.
Runtime setup 0.980 sec. 0.015 sec.
Task execution 0.194 sec. 0.136 sec.
Visualization and evaluationl890sec. 0.095 sec.

from a scratch.
The location of the executable for the MULT.V task on the selected resource is pro-

vided in the resource allocation information, which is retrieved from the task constraints
table. The executable is then linked to the I/O module. In the p4 version the MULT.V
program, it takes 7.01 seconds for compilation. The runtime setup time for the ADViCE
prototype consists of the time it takes the ACS to transfer the activation and resource
allocation information to the ADS and the time for the acknowledgment. This setup time
takes 0.015 seconds for the MULT.V task on the selected resource. For a p4 application,
the user creates a configuration file, i.e., the procgroup file, and manually links it to the
p4 application which takes 0.98 seconds. ADViCE runs the application automatically
with the "Execute Application" button and generates the results in the selected output
file. The execution time of the MULT.V task is 0.136 seconds when it is executed on four
nodes over the ATM. The execution time is 0.194 seconds using a p4 program with, the
same configuration.

In addition, ADViCE provides dynamic and post-mortem visualization of the applica-
tion. The user can visualize the loads of all the machines in one domain and can even focus
on the load information for the machines selected to run a given application. Further-
more, the execution time of each module within an application is visualized in ADViCE.
It takes 0.095 seconds to invoke the ADViCE visualization window for the MULT.V task.
If a p4 user wants to visualize the execution time to compare its performance with others,
it is necessary to use another graphic tool. The visualization and evaluation time depends
on which tool is used; as an example, "gnuplot" takes 1890 seconds.

6.2 Experiment 2: Using ADViCE as a Problem Solving Environment

In this experiment we demonstrate how the ADViCE can enable a novice programmer
to develop large-scale parallel and distributed applications running on geographically
distributed heterogeneous resources. Implementing such applications is currently a chal-
lenging programming problem and time consuming for even experts in parallel and dis-
tributed programming tools. A distributed application can be viewed as an Application
Flow Graph (AFG), where its nodes denote computational tasks and its links denote
the communications and synchronization between these nodes. Without an application
development tool, a developer or development team must apply much effort and time
to develop a distributed application from a scratch. To solve these difficulties, ADViCE

37

Table 5 , , t , 3
Performance comparison of the linear equation solver application for each software development phase

p4 ADViCE

Phase LU INV MULT.V LU INV MULT-V

Design and development 838 min. 1314 min. 862 min. 2.10 min. 1.57 min. 2.30 min.
(419 lines) (657 lines) (431 lines)

Compilation 6.45 sec. 8.10 sec. 7.01 sec. 0 sec. 0 sec. 0 sec.
Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec
Task execution 0.386 sec. 0.556 sec. 0.194 sec. 0.801 sec.1.360 sec.0.140 sec

Application execution 1-691 sec. 1-451 sec.
Application visualization 3200 sec. 0-140 sec"

provides an integrated problem solving environment to enable novice users to develop
large-scale, complex, distributed applications using ADViCE tasks. The Linear Equation
Solver (LES) application has been selected as a running example. Figure 12 shows the
AFG of the Linear Equation Solver, which consists of an LU Decomposition (LU) task,
two Matrix Inversion (INV) tasks and Matrix-Vector Multiplication (MULT.V) tasks.
The problem size for this experiment is 1024 x 1024 and its execution environment con-
sists of four nodes, which are SUN SPARCs and IBM RS6000 machines that are connected

by an ATM network.

Table 5 compares the timing of several software phases for the Linear Equation Solver
application using p4 and ADViCE. When a user has enough knowledge about parallel pro-
gramming and the p4 tool, he/she will spend 838 minutes for an LU task, 1314 minutes
for an INV task, and 862 minutes for MULT.V task. The total time to develop this appli-
cation is approximately 3014 minutes, (i.e., around 50 hours). Using ADViCE, a novice
user spends around six minutes to develop such an application. There is no compile time
in ADViCE, but a p4 application needs 21 seconds for compilation. The ADViCE setup
time for a Linear Equation Solver application is 0.043 seconds. The P4 user should create
all procgroup files and launch them in order, which takes around eight seconds.

Since the ADViCE is based on the data flow model and executes the application tasks
concurrently, the application execution time, including the setup time, is less than the
summation of all the individual task execution times. In our experiment with the Linear
Equation Solver application, the total execution time of the p4 implementation using four
nodes is 1.691 seconds. The ADViCE implementation of the same application with the
same configuration is approximately 1.451 seconds.

6.3 Experiment 3: Evaluation of the ADViCE Adaptation Approach

One of the main features of the ADViCE prototype is its transparent adaptation support.
In this experiment, we evaluate the performance of the ADViCE prototype to develop a

3The last two rows of the table are for the total time of the application.
4It is the total setup time for a ADViCE-based linear equation solver application.

38

fault tolerant distributed application that is shown in (Figure 21).

B-mEiMt«M**»l^K<eeHK^^
SYSTEM EDIT: EXECUTE > VISUALIZE fllEModule: Elementary .Special Matrix :Oata_Bnalysls

polynomial/Interpolation Miscellaneous

Figure 21: An Example of Fault Tolerant Distributed Application.

After a user develops an application using the ADViCE Application Editor window
(AES) and specifies that the application tasks should tolerate link and machine failures.
During the application execution, we manually kill the process running one of the applica-
tion tasks, say the INV task, as shown in Figure 21. The INV task failure is immediately
detected by the Local ACS that continuously monitoring the execution of the of the INV
task (Step 1 in Detection and Analysis Phase of Figure 22). The error message is reported
to the Server ACS running on the CMS (Step 1' and Step 2). The next step is to invoke
the Verification_Analysis_ADS procedure that is running on the Server ACS of the CMS
(Step 3) that determines that the EventCause is "Task down" (Step 15 in the Verifi-
cation_Analysis_A.DS of Figure 16. Once that is determined, the Adaptation_Plan_ADS
procedure is invoked. A simple recovery procedure could be to restart all the application
tasks (LU, INV, and MULT.V). This recovery procedure involves invoking the ARS to
reschedule resources to the application (see step 1 in Adaptation Phase of Figure 22).
Once the ARS schedules the application tasks and passes it to the Server ACS (Step 2),
the Server ACS setups the new application execution environment by starting the Local
ACS on each machine selected to run the application (Step 3). Once that is done, the
Local ACS starts the task execution on its machine (Step 4).

The performance of the adaptation algorithm depends on the the Change Detection
Time (CDT), Verification and Analysis Time {VAT), and Adaptation Plan Time {APT).
The CDT measures the time it takes ADViCE to detect the change event in any of
ADViCE services. The VAT measures the time it takes ADViCE to verify the change
event and determine its cause type. The APT measures the time it takes ADViCE

39

Detection and Analysis

Adaptation

Figure 22: An Example of the ADViCE Adaptation Algorithm.

to perform the operations specified in the adaptation plan associated with the affected
service. For the example shown in Figure 22, the CDT is 7.675 seconds, VAT is 5.328
seconds and APT is 18.451 seconds. We are currently evaluating different techniques to
achieve efficient implementations of all the procedures identified in the three phases of
the ADViCE adaptation algorithm.

7 Conclusion

We have presented the design and evaluation of the Virtual Distributed Computing En-
vironment (VDCE) and the Adaptive Distributed Virtual Computing Environment that
have been developed at Syracuse University and the University of Arizona.

The VDCE consists of three main modules: Application Editor, Application Sched-
uler, and VDCE Runtime System. The Application Editor provides users with all the
software tools and library functions required to develop a VDCE application. The main
function of the Application Scheduler is the initial task-to-resource mapping and any nec-
essary dynamic rescheduling. The VDCE Runtime System is based on the Control Virtual
Machine (CVM) and the Data Virtual Machine (DVM). CVM provides a seamless inter-
connection of the resources and monitors the resources. DVM enables a high-performance
communication medium among the application tasks.

40

We have successfully implemented a proof-of-concept prototype that supports all
major components of the VDCE architecture. We are currently working on extending the
current prototype in several ways: a) develop and implement an application programming
interface (API) that enables users to add VDCE library tasks; b) add more sites to increase
the computing services offered by VDCE; and c) develop and integrate mobile computing
technology into VDCE so that users can access VDCE resources using mobile hosts and
mobile interconnection networks.

We have also extended the VDCE prototype to support mobile computing and com-
munication resources by developing the ADViCE prototype. The ADViCE consists of
two main servers: Visualization and Editing Server (VES) and Control and Management
Server (CMS). These two servers provide all the services required to develop parallel
and distributed applications, run, control, manage, and visualize the execution of these
applications. We have successfully implemented a proof-of-concept prototype of the AD-
ViCE architecture that provides most of the ADViCE services. We also presented our
experimental results and evaluation of the utility of the services supported by the AD-
ViCE prototype to achieve efficient and seamless parallel and distributed programming
environment. We are currently extending the capabilities of ADViCE to provide efficient
adaptive scheduling algorithms and proactive management services.

We are currently investigating efficient techniques to achieve proactive control and
management of all services offered by ADViCE that will include transparent performance,
fault-tolerance, and security services for ADViCE applications/users.

References

[1] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, Fifteenth ACM Sym-
posium on Principles of Distributed Computing, Philadelphia, May, 1996.

[2] George H. Forman, John Zahorjan, The Challenges of Mobile Computing, IEEE Computer,
Vol. 27, pp. 33-47, April, 1994.

[3] S. Ahuja, N. Carriero, and D. Gelernter, Linda and Friends, IEEE Computer, vol. 18, No.
8 , pp. 26-34, August, 1986.

[4] P. Keleher, S. Dwarkadas, A. Cox and W. Zwaenepoel, Treadmarks: Distributed shared
memory on standard workstations and operating systems, Proceedigns of the 1994 Winter
Usenix Conference, pp. 115-131, January, 1994.

[5] K. Johnson, M. Kasshoek and D. Wallach, CRL: High-Performance All-Software Distributed
Shared Memory, Proceedings of the Fifteenth Symposium on Operating Systems Principles,
December, 1995.

[6] W. Liang, C. King and E. Lai, Adsmith:An efficient object-oriented DSM environment on
PVM, Proceedings of the 1996 International Symposium on Parallel Architecture, Algorithms
and Networks, pp. 173-179, June 1996.

[7] J. C. Browne, S. Hyder, J. Dongarra, K. Moore, P. Newton, Visual programming and
debugging for parallel computing, IEEE Parallel and Distributed Technology, 3(1) (1995)
75-83.

[8] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim, X. Bing, B. Ye,
The software architecture of a virtual distributed computing environment, in Proceedings of
Sixth IEEE International Symposium on High Performance Distributed Computing, 1997,
pp. 40-49.

[9] H. Topcuoglu and S. Hariri, A global computing environment for networked resources, in

41

Proceedings of International Conference on Parallel Processing, 1997, pp. 493-496.
[10] H. Topcuoglu, S. Hariri, D. Kim, Y. Kim, X. Bing, B. Ye, I. Ra and J. Valente, The Design

and Evaluation of a Virtual Distributed Computing Environment, J. of Networks, Soßware
Tools and Applications (Cluster Computing), 1998.

[11] P. Newton, J. C. Browne, The CODE 2.0 graphical parallel programming language, in
Proceedings of ACM International Conference on Supercomputing, 1992.

[12] R. Wolski, C. Anglano, J. Schopf, F. Berman, Developing heterogeneous applications Using
Zoom and HeNCE, in Proceedings of the Forth Heterogeneous Computing Workshop, 1995.

[13] C. Angalano, J. Schopf, R. Wolski, F. Berman, Zoom: a hierarchical representation for
heterogeneous applications, technical report «95-451, Computer Science Department, Uni-

versity of California at San Diego, 1995.
[14] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-level scheduling on

distributed heterogeneous networks, in Proceedings of Supercomputing 96, 1996.
[15] J. Weissman, A. Grimshaw, A federated model for scheduling in wide-area-systems, in

Proceedings of the Fifth IEEE International Symposium on High Performance Distributed

Computing, 1996, pp. 542-550.
[16] T.L. Adam, K. Chandy, and J. Dickson, A comparison of list scheduling for parallel pro-

cessing systems, Communication of ACM, 17 (1974) 685-690.
[17] H. El-Rewini, H. Ali, T. Lewis, Task scheduling in multiprocessing systems, IEEE Computer,

28(12) (1995) 27-37.
[18] Y. Kwok, I. Ahmad, Dynamic critical-path scheduling: an effective technique for allocating

task graphs to multiprocessors, IEEE Transactions on Parallel and Distributed Systems, 7

(1996) 506-521.
[19] Y. Yan and X. Zhang, An effective and practical performance prediction model for paral-

lel computing on nondedicated heterogeneous NOW, Journal of Parallel and Distributed

Computing, 38 (1996) 63-80.
[20] M. Zaki, W. Li and M. Cierniak, Performance impact of processor and memory heterogeneity

in a network of machines, in Proceedings of the Forth Heterogeneous Computing Workshop,

1995.
[21] I. Foster and C. Kesselman, Globus: a metacomputing infrastructure toolkit, in Proceedings

of the Workshop on Environment and Tools for Parallel Scientific Computing, 1996.
[22] H. Casanova and J. Dongarra, Netsolve: a network server for solving computational science

problems, in Proceedings of Supercomputing 96, 1996.
[23] A. Beguelin, J. Dongara, A. Geist, R. Manchek, and V. Sunderam, User Guide to PVM,

Oak Ridge National Laboratory and Department of Mathematics and Computer Science,

Emory University, 1993.
[24] Message Passing Interface Forum, MPI: A message-passing interface standard, version 1.0

May 1994.
[25] R. Butler and E. Lusk, User's guide to the p4 programming system, Mathematics and

Computer Science Division, Argonne National Laboratory.
[26] S. Park, S. Hariri, Y. Kim, J.S. Harris, and R. Yadav, NYNET communication system

(NCS): a multithreaded message passing tool over ATM network, Proceedings of the Fifth
IEEE International Symposium on High Performance Distributed Computing, 1996, pp.

460-469.
[27] L. Smarr and C. Catlett, Metacomputing, Communications of the ACM, 35, 6, (June 1992)

44-52.
[28] A. Grimshaw and W. Wulf, Legion - A View from 50,000 Feet, Proceedings of Fifth IEEE

International Symposium on High Performance Distributed Computing, 1996, pp. 89-99.
[29] K. Dincer, World-Wide Virtual Machine: A Metacomputing Environment Integrating

World-Wide Web and High Performance Computing and Communication Technologies,
Ph.D. Thesis, Syracuse University, 1997.

42

[30] J. Gehring and A. Reinefeld, MARS - A framework for minimizing the job execution time
in a metacomputing environment, Future Generation Computing Systems, (1996).

[31] Mike Litzkow, Miron Livny Experience with the condor distributed batch system, in IEEE
Workshop on Experimental Distributed Systems, 1990.

[32] M. A. Hiltunen and R. D. Schlichting, Adaptive Distributed and Fault-Tolerant Systems,
International Journal of Computer Systems Science and Engineering, vol. 11, nbr. 5, pp.
125-133, September 1996.

43

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

